
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

The Development and Uses of Metrics
for Performance, Portability, and Productivity
John Pennycook, Jason Sewall, Doug Jacobsen
Intel Corporation
P3HPC Forum 2020

Acknowledgements:
Lawrence Livermore National Laboratory, NERSC, NVIDIA*/PGI*, Sandia National Laboratories, University of Bristol

http://www.intel.com/sites/corporate/tradmarx.htm

© 2020 Intel Corporation

2016: Motivation

2

▪ Workshops and frameworks abound, but no consensus on the end goal:

– Did this commit make things better or worse?

– How do different approaches compare?

– What does it mean if PP appears in an RFP?

▪ We decided to take an application-centric view:

1. Is it performance portable?

2. What performance does it achieve “on average” (over platforms/inputs)?

3. How similar is the performance efficiency achieved on different platforms?

4. What performance can I expect if I introduce a new platform?

5. How difficult is it to write/maintain?

© 2020 Intel Corporation

2017: Definition and Metric

3

Progress

▪ Yes/No answer for “is it PP?”

▪ Captures “average” performance in 𝐻

▪ Architectural and Application Efficiency

Challenges & Future Work

▪ Doesn’t account for productivity

▪ Loses information about distribution

▪ Computing efficiency can be difficult

“A measurement of an application’s performance efficiency
for a given problem that can be executed correctly on all
platforms in a given set.”

0%

20%

40%

60%

80%

100%

A B C D E F

P
e

rf
o

rm
a

n
ce

 E
ff

ic
ie

n
cy

Platform

Example Application

PP(a,p,H) = 23.30%

Efficiency PP

S. J. Pennycook, J. D. Sewall and V. W. Lee, “A Metric for Performance Portability”, PMBS 2017

© 2020 Intel Corporation

2018: Architectural Efficiency from Roofline Model

4

Progress

▪ Automatic computation of efficiency with
higher accuracy than simple throughput

▪ Demonstrated importance of choosing
correct ceiling when computing efficiency

Challenges & Future Work

▪ Refining roofline eventually guarantees
100% architectural efficiency!

C. Yang et al., “An Empirical Roofline Methodology for Quantitatively Assessing Performance Portability”, P3HPC 2018
T. Zhao et al., “Delivering Performance-Portable Stencil Computations on CPUs and GPUs Using Bricks”, P3HPC 2018

Plug in Roofline model in place of
architectural efficiency:

𝑒𝑖 𝑎,𝑝 =
𝑃𝑖 𝑎, 𝑝

min(𝐹𝑖 , 𝐵𝑖 × 𝐼𝑖(𝑎, 𝑝))

May need to select a different bound
for different platforms.

© 2020 Intel Corporation

2018: A Beginner’s Guide

5

Progress

▪ Identified that PP can be skewed by using
many similar platforms

▪ Highlighted tension in optimizing for PP

Challenges & Future Work

▪ Proposed idea of a heterogeneity metric
as a confidence score

▪ Proposed categorization of optimizations
and a database of best-known versions

H. Dreuning, R. Heirman, A. L. Varbanescu, “A Beginner's Guide to Estimating and Improving Performance Portability”, ISC Workshops 2018

© 2020 Intel Corporation

2018: PP MD

6

Progress

▪ Penalizes codes that would require
significant effort to port

Challenges & Future Work

▪ Requires manual identification of
application components

▪ Metric does not support multiple
platforms without additional averaging

A. Sedova et al., “High-Performance Molecular Dynamics Simulation for Biological and Materials Sciences: Challenges of Performance Portability”, P3HPC 2019

where:
• 𝐺 captures components significantly improving performance
• 𝑄 captures non-portable components
• 𝑆 is speed-up.

© 2020 Intel Corporation

2018: Productivity Logs & Code Divergence

7

Progress

▪ git-hooks for tracking LOC changes and
performance portability of each commit

▪ Partial productivity metrics

Challenges & Future Work

▪ Difficult to compute divergence

▪ Assumes each platform is a distinct
code base (or git branch)

S.L Harrell, J. Kitson et al., “Effective Performance Portability”, P3HPC 2018

𝐻

2

−1

෍

𝑖,𝑗 ∈𝐻×𝐻

𝑑 𝑐𝑖 , 𝑐𝑗

where:
- 𝐻 = set of platforms
- 𝑐𝑖 = code required to compile and
execute correctly on platform 𝑖.

https://github.com/lanl/SHELTIE/

https://github.com/lanl/SHELTIE/

© 2020 Intel Corporation

2019: Code Base Investigator

8

Progress

▪ Divergence no longer tied to git commit

▪ Intuitive visualization of code similarity
between platforms

Challenges & Future Work

▪ Only captures static specialization

▪ Doesn’t support C++ templates

S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, “Code Base Investigator”, P3HPC Forum 2019
I. Z. Reguly, “Performance Portability of Multi-Material Kernels”, P3HPC 2019

𝑐𝑖 , 𝑐𝑗 =
𝑐𝑖 ∪ 𝑐𝑗 − 𝑐𝑖 ∩ 𝑐𝑗

𝑐𝑖 ∪ 𝑐𝑗

“The ratio of platform-
specific code to code used
by both platforms.”

Compute code divergence using Jaccard distance
between different implementations.

https://github.com/intel/code-base-investigator

https://github.com/intel/code-base-investigator

© 2020 Intel Corporation

2019: PP Divergence

9

Progress

▪ Summarizes performance over platforms
and input problems

▪ Represents average distance from the
best-known implementation

Challenges & Future Work

▪ Score can be >100% if performance is
reported as time; differs from throughput

▪ Needs to be evaluated for more platforms

D. Daniel et al., “On Applying Performance Portability Metrics”, P3HPC 2019

𝛿 𝑎, 𝛼 =
𝑓𝑖 𝑎, 𝑝, 𝑠 − 𝑓𝑖(𝛼, 𝑝, 𝑠)

𝑓𝑖(𝛼, 𝑝, 𝑠)

Δ𝑅𝑀𝑆 =
σ𝑠∈𝑆 𝛿 𝑎, 𝛼 2

𝑆

𝑃𝐷 =
σ𝑖∈𝐻 Δ𝑅𝑀𝑆

𝐻

© 2020 Intel Corporation

2019: Bristol Case Studies

10

Progress

▪ Comparison of languages backed by
enough data to be interesting

▪ Interesting visualization for comparing
impact of platform selection on PP

Challenges & Future Work

▪ Order of platforms on x-axis of graph is
application-specific

▪ Lots of data to explore and interpret!

T. Deakin et al, “Performance Portability Across Diverse Computer Architectures”, P3HPC 2019

© 2020 Intel Corporation

2020: Argonne OpenCL Case Study

11

Progress

▪ Augments PP with standard deviation
to capture spread of results

Challenges & Future Work

▪ Standard deviation is typically defined
relative to arithmetic mean

▪ Unclear what it “means” to calculate
standard deviation from PP

C. Bertoni et al, “Performance Portability Evaluation of OpenCL Benchmarks Across Intel and NVIDIA Platforms”, IPDPSW 2020

© 2020 Intel Corporation

Lessons Learned

12

1. We need different tools for different analyses

2. Growing consensus around P3 terminology

3. The community is interested in two different kinds of productivity:

– Effort required to develop (performance) portable codes today

– Effort required to move codes to new machines

4. How much specialization is okay is subjective

© 2020 Intel Corporation

Impact: OpenMP* Variants

▪ Maximizing PP requires good
performance everywhere

– Specialization is unavoidable

▪ Minimizing CD requires specialization
to be simple to express:

– Should avoid boilerplate dispatch

– Shouldn’t “pollute” remaining code

__m128i _mm_add(__m128i a,
__m128i b)

{ /* Specialized code using SSE */ }

__m256i _mm256_add(__m256i a,
__m256i b)

{ /* Specialized code using AVX2 /* }

#pragma omp declare variant(_mm_add) \
match(construct={simd}, arch={sse})
#pragma omp declare variant(_mm256_add) \
match(construct={simd}, arch={avx2})
int add(int a, int b);

13
S. J. Pennycook, J. D. Sewall, A. Duran, “Supporting Function Variants in OpenMP”, IWOMP 2018

© 2020 Intel Corporation

Impact: oneAPI and DPC++

▪ Intel is tracking DPC++ compiler
development using PP and CD

▪ Encourages questions like:

– Is this feature supported across
different platforms?

– Do these concepts have the same
interpretation across platforms?

– Do we need to provide a library for this
functionality to minimize divergence?

14

Results shown are for illustrative purposes only, and do not reflect the current or targeted state of the DPC++ compiler.
See our other talk at P3HPC Forum 2020 for more details on combined usage of PP and CD.

“Data Parallel C++ (DPC++) ... enables high productivity and
performance across CPU, GPU, and FPGA architectures, while permitting
accelerator-specific tuning.” - http://software.intel.com/oneapi

Benchmarks should
ideally be as close to
here as possible.

http://software.intel.com/oneapi

© 2020 Intel Corporation

Next Steps

15

▪ We’re not there yet†:

1. Is it performance portable?

2. What performance does it achieve “on average” (over platforms/inputs)?

3. How similar is the performance achieved on different platforms?

4. What performance can I expect if I introduce a new platform?

5. How difficult is it to write/maintain?

▪ Need more feedback and evaluations of proposed metric and tools

▪ Lots of interesting avenues for future research and tool development

† Many papers addressing 1 and 2, some papers addressing 3 and 5, only one or two papers addressing 4

© 2020 Intel Corporation

Legal Notices and Disclaimers
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of the publication date of the referenced papers and may not reflect all publicly available security updates. See configuration
disclosure for details. No product can be absolutely secure. Configurations:
Slide 4 – Measured by NERSC; C. Yang et al., “An Empirical Roofline Methodology for Quantitatively Assessing Performance Portability”, P3HPC 2018
Slide 5 – Measured by University of Amsterdam; H. Dreuning, et al., “A Beginner's Guide to Estimating and Improving Performance Portability”, ISC Workshops 2018
Slide 6 – Measured by ORNL; A. Sedova et al., “High-performance Molecular Dynamics Simulation for Biological and Materials Sciences: Challenges of Performance Portability”,

P3HPC 2018
Slide 8 – Measured by PPCU ITK; I. Z. Reguly, “Performance Portability of Multi-Material Kernels”, P3HPC 2019
Slide 9 – Measured by ITA Brazil; D. Daniel et al., “On Applying Performance Portability Metrics”, P3HPC 2019
Slide 10 – Measured by University of Bristol; T. Deakin et al, “Performance Portability Across Diverse Computer Architectures”, P3HPC 2019
Slide 11 – Measured by ANL; C. Bertoni et al, “Performance Portability Evaluation of OpenCL Benchmarks Across Intel and NVIDIA Platforms”, IPDPSW 2020

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced
data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice Revision #20110804

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

19

http://www.intel.com/benchmarks

